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) ) Abstract

Using the recently developed method of recurrence relations,
we have studied the ﬁime and frequency dependent behavior of the
two dimensional electronic system at long wavelengths. Several
families of autocorrelation functions including the relaxation
and memory functions are obtained exactly. In addition, other
linear response quantities e.g. the density-density response
function and dynamic structure factor are obtained. This work.
contains a detailed application of the method of recurrence

relations,
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I. Introduction Eé;

The electron gas has had a long history as a model for fﬁ?}

metals and has attracted considerable theoretical efforts over §£f;

the years.1 Interest in this model has been substantially '5§@
4

heightened recently by the physical realization of an essentially fmﬁ

two dimensional electronic system in MOS, heterostructures and ﬁ%ﬁ

superlattices.z'3 In addition, the realization that many-body Eizi
effects are in some ways more pronounced in two dimensions than H

in three cdimensions has further given impetus especially to

theoretical efforts. The static properties of the two dimensional

version of the electron gas model have already been extensively

studied.? The correlation energy, for example, has been calcu- - N

lated by techniques which are basically similar to those employed

5-10

for the three dimensional case. The dynamic properties have

also received some attention, but largely limited to the frequency-

dependent density response function calculated by RPA and other

perturbative teéhniques.ll-l4

To our knowledge, there are as yet ooy
no measurements of the dynamic structure factor with which these
calculations can be compared.

In the two dimensional electron gas model, one has an

attractive possibility of finding exact time and frequency
dependent solutions, normally precluded in the three dimensional
model. Such solutions can contribute to our understanding of
nonlinear behavior of fluids, e.g., memory effects and long

These
15

time tails in the velocity autocorrelation function.

studies are attracting considerable current activities.

The time evolution of a dynamical variable e.g., density-

- N ca . . D Y T T . LIV T .
e et e R R AT T L LN NN A B AR I A SO
A WA T WA I I IPAE WAL W 2"s 2 ety o' te 2y o




fluctuation operator may be studied by the method of recurrence

16,17 Given certain static properties known as the

relations.
recurrants, one can obtain the exact time-dependent behavior of

the density fluctuations, from which the associated relaxation

LML RTINS T

and memory functions as well as the random force.18 This method

has already been successfully applied to several formal and

physical models.lg We present here a complete account of the

Yy S, W =

time and frequency dependent behavior of the two dimensional

electron gas at long wavelengths. A preliminary account of this

work was previously reported.20
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II. Time Evolution of Density Fluctuations in the Electron Gas at T=0

We consider the two dimensional electron gas model defined

-

~a
AR ERS

by the Hamiltonian H
H=ecte =+ 5y v, c te tec. T H +V (1)
= X
L k% Sk £ 2koprk Sg-k %% T o .
+

where Cy & ¢, are, respectively, the creation and annihilation

operators at wave vector k, € = k2/2m, Ve = Znez/k, where m and e

are, respectively, the electron mass and charge, { = 1. Our

LN
F I ]
]

system is imposed under an external perturbing potential of the

following form:

E H oy = }{ ey (£) Py elut (2)

Ej where Py is the Fourier component of the external electric field

ﬁ; sufficiently small as to permit the use of linear response theory, ﬁl;ﬁ
Ei w is the freguency of the field, P is the density fluctuation b

operator defined as -

. +

o = c c (3a
and B '

with pk(O) = 0 Given an explicit knowledge of time dependence

in pk(t), one can proceed to calculate e.g. relaxation function
(pk(t), pk)/(ak,ok), from which other physical quantities via
linear-response relations. Here the inner product means the

Kubo scalar product (see sec. III).

':\':-S*

A

It is important to note that the calculations of time RO

.':\‘:\“

evolution are carried out with the static properties e.g. k fixed N

at some given value. In this work, we shall confine ourselves

to k/kF<< 1, where kF is the Fermi wave vector, such that the

density fluctuations are those which occur very near the Fermi e

-




surface. Physically it means that excitations in (1) are limited
to electron-hole pairs only (1i.e., no multipair excitations
allowed). In this static regime (k/kF<< 1 and'T = 0) the static
susceptibility (pk, pk) and other static quantities of interest

are known exactly.
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III. Method of Recurrence Relations

If the electron gas is momentarily perturbed by an external
field coupled to density fluctuations (2) in accordance with linear
response theory, the system will undergo a relaxation process.

The time evolution of density fluctuations satisfies the

Heisenberg eguation of motion viz.,

: pk(t) =i [H, pp(8)]. (4)
i One can put it in the form of the generalized Langevin equatlon18
ds, (t)/dt + édt' M (t-t") py (£") = Fp(t) (5)

where M and F are, respectively the memory function and generalized
. random force. This form has the advantage of introducing the two
physical quantities. The formal solution for the time evolution
of Py is given by the method of recurrence relationsla.

i According to this method, one constructs § a d-dimensional

Hilbert space of P spanned by a set of orthogonal basis vectors

fo fl"’fd-l' This physical space S is an abstract space realized
I by the Kubc scalar product
8 -
(X,Y) = f du <euH X e uH Y+>' - Xs<xts (6)

o)
for every X, Y&S, where <...> denotes the canonical ensemble

average, + Hermitian conjugation and B is the inverse temperature.

The method of recurrence relations shows that in such a space

the basis vectors satisfy the following recurrence relations (RRI)

fo01 = £, % 8, £, 0 <v <d-l (7)
; where £, = i [H#, £ ] (8)
. and
Av = (fv'fv)/(fv—l’ fv—l)' (9)
Here & a relative norm, will be referred to as the vth recurrant.

v!
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The boundary conditions require that f_, =0 & A, = L.

By choosing fo appropriately, one can readily obtain all
other fv's by the RRI. Given these basis vectors for S, the
solution of the Heisenberg equation of motion for pk(t) may
be formally 3igen an orthogonal expansion as

Py (£) =u2 0a\)(t) £, (10)

where av(t)'s are real time-dependent functions i.e., auto-
i correlation functions. If in fact one chooses fo =P+ ao(t)

corresponds to the relaxation function of linear response theory.

; The most important property for these functions is that they n}iﬁ‘
. P L
! satis€y a redurvence relation (RRII): L e

boe1 2o (B)= - a,(t) +a,_;(t), 0 <v <d-1 (11)

where a (t) = dav(t)/dt and a_,(t) = 0. With the choice fo = Px
the boundary conditions are that ao(t=0) =1, av(t=0) = 0 if v> 1.
The above recurrence relation is realized by the recurrants Av's,

which are static properties. For the two dimensional gas at long

wavelengths(k/kF<< 1) and T = O they are exactly calculable. RN

Hence, it may be possible to solve the RRII to obtain the auto-
correlation functiocns av(t).
The random force for Py is a vector in a subspace of S.

It may alsc be given an orthogonal expansion L
d-1 s

] : N
_ F,(t) =) b (t) f (12) _._{
. k v=]1 v v "_‘

where b (t)'s are real time-dependent functions, of which bl(t)

\ is related to the memory function M, (t) = 4, by(t). These auto- NN

correlation functions also satisfy a recurrence relation like RRII:

. P
........
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YT elw 4,

Av+l bv+l(t)= - bv(t) + bv-l(t)' 1l <v< @-1. (13)

Observe that Al does not enter into (13). Hence, bv(t)'s do

not depend on the first recurrant. The boundary conditions

[ LA

a4 »
v "2 e %

require that bl(t=0) =1 &b, (t=0) =0 if v > 2. The two

. families of autocorrelation functions are related by a convolution
}: relation

a, (t) = convol. (b (£) * aj(t)), 1<vd-1. (14)
ﬁ Hence, if ao(t) is known, av(t) is knowable by the RRII and

bl(t) via convolution. The method of recurrence relations is
exact. If the recurrants are exactly given in some static regime,
i the RRII yields exact time dependence in that static regime.
For example, the response fuﬁction, onz2 of the éutoccrrelations
av(t)'s, satisfies the moment sum rules exactly to all ofders

in the static regime where the recurrants are valid.
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IV. Basis Vectors and Norms

By choosing fo = P, We can directly obtain from the RRI all

other basis vectors spanning S:

3 Px

II
(e
+
>
+
=]

174

etc, where the number of dots or simply the number above pk refers

to the number of times the commutator of 2% with H is being nested

S b S—

e.g., B, =i (4, 5] =i (8, (H, [H, o1 11 =3,

The norms of these vectors are:

2 +i3-+A4ka + (Al A3 + A A, + Az A4)pk (15f)

A e LY N N N TIT Y TN Y UV UYY

(15a)
(15b)
(15¢) _-;_{-_r-_':é
(154) 1
(15e)

(fo,fo) = (Pyr ) = g (16a) ;éfﬂ
(£,,50 = (B, by) (16b) i
(£5,85) = (B, 5 ) =(3) (P 0) (16c)
(£3,£5) = By, £ -2 + 8,) (5y.5)) (164)
(£40£5) = By By) =051 + 8y + 83) (By, By) +8,83 (B, By) (16e) 10
(£2,85) = (B, B) =(a; + B, + 85+ 8,) (B, By (16£) S
+ (8 8548,8, +8,8,) (B, B)) "‘““j
etc., where we have used the identity (5, §) = - Sl'mgl) = - (%L, ;
norm> 1. ;
to know :"'5

Obseria2 that to calculate fv or its norm, we need

the norms of f £ Thus, if we calculate

\)'l' \;_2, aoofon

successively starting with the basal vector fo’ we can

all the basis vectors and their norms explicitly. For

electron gas at long wavelengths, these norms can be obtained

the norms

obtain R
|
the Rt

B ——



by working out

the nested commutators of pk and evaluating the

inner products at T o.

(o)

Observe also that 6k = i[H,pk] = i [Ho,

pk] = 5k , where H_ is the noninteracting part of H. As a
result, the noninteracting or ideal Hamiltonian will have an
important input in the behavior of the recurrants.

Ideal system

Here we express kK in units of kF such that €. = 1/2m

F

where £, is the Fermi energy in two dimensions. In these units,

1)

the norms for the two dimensional electron gas are given below:

y(lo , (o)

(fo,fo Xie = m/7, k< 2 (17a)
(£,,8) 9= k% e/ (17b)
(£,,6) =k + k& e ¥/ (17¢)
(25,85 (=8 + ax¥ + 0kt & 5/n (174)
(2,06 O =x® + 10k + 0ty e T/m (17e)
(£5.£5) D=k w20kt + 0kt e P/ (17£)

etc. For the recurrants valid in the static regime of k<< 1, we

shall retain only the leading order in k:

(o) 2 2

A -

&y = 2k £p ) (18a)
(0)_ , (0) _ , (o)_ 2 2 -,

8, = 53 = A4 = ... k ep 2 (18b)

In the two dimensional ideal electron gas at long wave-

lengths the norms are finite and non-vanishing for all v's. Hence,
the dimensionality of the Hilbert space of Px is infinite (d=«).

Interacting systems

For the static recime of small k, we find that the norms are
to the leading order in k as follows:

. (o)
Y1 )

= v _ . (o)
(Io'fo’ = /(1 + Vi

(f b

)

Y
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Hence, to the leading order in Kk,

Al =20+ 7T (20a)
= (o) _
where ' = (wPCI)2 = 27p e2 k/m, where p is the number density.

For the two dimensional interacting electron gas at long wave-
lengths the dimensionality of the Hilbert space of Px is also

infinite.
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% V. Autocorrelation Functions for Ideal System

Using the recurrants(l8a,b) obtained for the ideal

S
electron gas, we can now obtain the autocorrelation functions RN
. :_:_:'
aV(O)(t) & bv(O)(t) from the RRI valid at long wavelengths. ;igj
Ny
Defining A = % uz, we can decompose the RRII as follows: Y
i 2 _ (o) (o) R
. — s RO
& utoa (t) = - a (t) (21a) A
- 2 o . (o e
: v a, @@ =-2al @+ a,_ P, v (21b) i
'ﬁ We look for a function which satisfies the above equations. Let o]
: (o) NV DR
a, (£) = A U, hv (At) (22) L
where A is a scale factor, g, is a coefficient, and hv is a
function, all to be determined. The boundary condition ao(o)(t=0) =1

imposes that Uy =1 & ho(O) = 1. Substituting (22) into (21a,b)

we get
s w2 2720 hp = - hy (23a)
2 =2 . . o
BT UG 0yy) By = 7 (/U ) By by, v 2 1, (23D)
where h' = éh(x)/dx. Clearly the scale factor is X =y, which

somewhat simplifies (23a,b) to

] Uy hl = - ho' (24a)

y (Uv+l/Uv—l) hy,1 =~ (Uv/Uv-l) h," + hy_;, V ; 1. (24b)

Now the above may be compared with the recurren&e relation for R

the Bessel fuaction Jv21 f%ﬁ
177 % (25a) ;gﬁ
Tyep = = 23,0 3,4, vl (25b) ;77

If U, = 2Y, (24a,b) become identically reduced to (25a,b). Hence,

a Oy =2 vV 3 ey, v >0. (26) T

v v
Observe that the solution satisfies the boundary condition R
that aV(O)(t=O) = 0, v > 1. Thus the RRII realized by the Eﬁﬁ




7 N
j recurrants of the two dimensional ideal electron gas is isomorphic Zif
N NN
“. -q'..f
- to the recurrence relation for the Bessel functions. The short :jﬁ
. adl
q
. and long time behavior of the relaxation functions av(o)(t) is Etg
% given directly by the asymptotic properties of the Bessel 'f“%
& functions e.gq. Ryﬁ
(o) _ by
e (£ > ) ~ 77 cos(ut - um), (27) e
. For dynamical analysis it will be useful to have the I}Sﬁ
Laplace transform of the relaxation functions: Egﬁ
4
. koo
av(o)(z) =T [av(O)(t)] . (28) e
where T is the Laplace transform operator.
The autocorrelation functions bv(O)(t) can be obtained by
the convolution eq. (14) which when Laplace-transformed takes .
a simple form:
_bv(z) = av(z)/ad(z) : (29) E:‘
where bv(z) =T [bv(t)]' v > 1. Using (28) we obtain directly, ng
b, = 2¥ w2 (2? + DY -n)Y, vl (30) o
Hence, E“?
b, ) =7 92 i
N v v i
iy . 22 e
- =2V v, J, (ut/ut) v 2. (31) e
) The memory function for the two dimensional ideal electron gas ;_*

becomes
MO ) =4, @b @) =02 5 ur/ue) (32) o
~t-3/2 cos(nt = 37/4) if t » o, (32a ) ;;:
Other linear response guantities e.g., the response function éi
Xy (@), the dynamic structure factor S, (v) can now be directly EE;
i obtained from the autocorrelation functions. From linear ;?;
- response theory (henceforth suppressing k dependence) :ig

.......................




() = x(t)/x =-2-a (8), ¢t>o. (33) e
ot o - - Y
. ) :;.r,'d:
Hence, i
i(o)(t) =uJ,; (ut) (34) o
5%
and 53;
l,‘-ﬁ‘
< (), .= (o) >3
P @ET e, | ;
=1-iw (W2 -0H7H, 0<w <y (35a) 0
=1-ww )™,y cw <, (35b) -
This is equivalent to the well known result due to Sternll at :
long wavelengths. Also since 7 S(w) = - Im x(z =iw), we obtain
directly

5§00 () = 510y x1©)

=w?- 1Y 0 <w <y _ (36a) :::';‘Si:

=0, B <w <o : _ (36b) \\“

Observe that S(O)(w) has a power law singularity at w=u-, E:E
suggestive of an apparent collective excitation. The dynamic el
structure factor satisfies the standard moment sum rules. to ;11 : -
orders at long wavelengths. In this static regime the time EEf

evolution in the two dimensional ideal electron gas is thus

exactly and ccompletely characterized.
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VI. Autocorrelation Function for Interacting System

It was shown that for the two dimensional interacting

(o) 5::-::4

electron gas at long wavelengths Av= Av , v > 2, although NN

44 7 Av(o) (see eq. 20a,b). Since the autocorrelation : _ %%ﬁﬂ

functions bv(t) depend not on the first recurrants but on Bovast

others only we must have bv(t) = bv(O)(t), v > 1. We take

advantage of this simplification to obtain the autocorrelation

B functions a (t) as follows: By taking the Laplace transform b
;a of the RRII, we get for v = 1,
b.; _ _l
ki A, bl(z) = (ao(z)) z. ' (37)
_ Using (30) for bl(z) = bl(O)(z), we get .
. (z2 + uz)ﬁ - (1 - s)z (38)
U + oz
where s = Al(O)/Al = uz/(uz + 2T) (39)
@=1-(1-8)°2=(x2+1n)/(x%+ 1?2 (40)
where x2 = F/uz. Note that 0 <s <1 and hence 0 £a £1. 1In both

cases, the upper bound is reached in the ideal limit. By taking

an inverse transform we have

(z2 + )" -1 - 8)2

3 (8) - SB[, 2t L (41
271 2, !
c L ¢z }
! ~o
: 3
where the contour ¢ runs along the imaginary axis. There are T
two types of singularities on the imaginary axis. There is a cut ¥
from z = - iy to z = iu. In addition, there are a pair of oy
i
isolated poles beyond the cut at z = ¢ ia’k TR iwp. In
Appendix A we have evaluated this integral: R




o Qroate b 5 g0 Aal auman A AP b ©4e i Bip Wiy -2

8 R
: 'v-"'n"t
5 S
T Wl
. < 2 Paota
. a (t) = A I (- (3/3ut) " [J,(ut)/ut] + A cos w t  (42) 0
. It . P P kel
.;A n=o &:’..'.':-
. where
A =1-01-0° (42a)
: A, =2 (1 - 0%~ 1-alo. (42b)
We can now check various boundary conditions on ao(t).
In Appendix B, we show that ao(t=0) = 1., In Appendix C, we
show ao(t) = Jo(ut) at the ideal limit o= 1. It is easy to show
- that as a+ O, ao(t) = (1 - %2) cos mpt + ko Jl(ut)/ut + 0 (az). A
- For t =, ao(t)"t-3/2 cos (pt - 37/4) + Ap cos wpt. Also given ;f&'
- RS
7 ao(t), the other av(t)'s can be obtained from it with successive L
4 -A--
{ﬂ applications of the RRII, e.?., Alal(t) = - éo(t), Azaz(t)= - él(t) ST
. + ao(t) , etc. . ‘:
- In Appendix D, we have obtained a closed form expression :?i;
for the Fourier transform of ao(t) using (42): o
A, w2 - A" ' o
ao(u) = 5 5 r O<w<y (43a) DA
a(p€ - aw®) Pt
: = A [8(w = u) + Slut )], ¥ <w <. (43b) 1
In Appendix E, we have obtained the response function ?ihi
ik(w) = Xy (w)/xk using (42): Again suppressing k dependence, S
E A (1 - a)L’ w2 :fll::;:_‘l
Y Re X (w) =1+ 3 5— * 0 < w< (44a)
I ( - )
u aw
A 4k 2,242
- =14+ -8 [(1 aé (1 - /) e, oy <o (44D)
f:f (u - aw’)
2 2. 4
A_ w(u”™ - w™) ;
SIm § (0) = —S . — 0 <w <y (45a)
(u - aw’)
=% 7TA_ [§(w - wp) + §(w + wp)], W < w < =, (45b) 1
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Egqs. (43) and (45) satisfy the well-known relation:

Im ¥(w) = - 1w ao(w). For w - O, Re ¥{(w) =1 + 0 (wz); and for
w+®, Re X (4) = 0(w %) as required. 1In the high frequency
regime, Im X (w) agrees with Rajagopal..12 For a = 1, egs. 43-45

all reduce to the ideal results of sec. V.

The dynamic structure factor can be obtained by the relation

T S{w) = - Im x (w). Hence, directly from (45) we have
s (w) = s(w)/x
As w (pz - wz)g
= 5 2 ’ O <w <u (46a)
T (u° -oaw”)

i Ap wld(w - wp) + é(u-bwp)], H <w <» (46b)
The general shape of the dynamic structure féctor resembles the
three dimensional version at the same small k, consisting of a
broad single-particle spectrum and a sharp collective peak.
However, the amplitude of the two dimensional single-particle
spectrum is "soft", i.e., it grows with a. Hence, there is an
interesting crossover behavior going from interacting to ideal,
which is unique to two dimensions at small k.23 The total area
under the single-particle spectrum remains finite at all values
of o including « = 1. The dynamic structure factor (46) satisfies

the moment sum rules to all orders exactly as in the ideal case.
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- VII. Intrinsic Conductivity ﬁgg
i At a low temperature the frequency-dependent conductivity :f:
; ck(w) is generally understood to be largely due to impurities :iﬁ
;g present in the system. The electron-electron interaction con- §§§
. RS

tributes to it hardly at all. This conventional notion ignores

"
Iy
§ »

the possible existence of random currents arising entirely from
density fluctuations. A random current can contribute to the
ﬁ frequency-dependent conductivity as may be seen from the Kubo "L_
conductivity formula, which may be termed an intrinsic con-
ductivity. It appears that Kubo had speculated upon the

u: . - . . . s s 24
_ existence of an intrinsic conductivity some years ago. oo

The density fluctuations and the total current j, are ;ﬁ?ﬁ

connected by the continuity equation, ' e

[ 3
Fi bk(t) = - ik.jk(t) (47) A
f? where the total current jk includes a random current jkr. Kub024 7
- " .
EZ ) showed that the random current is associated with the random RO
ot
F‘ force Fk(t) such that >
g . . T - ‘ f'
- ik.j, " (%) F (t). (48) o
. Since our system contains no impurities, the Xubo formula assumes }ﬁ
J :
f the following form: _
L _ 2 (7 -iut ,. r . T . T . T X
- ot = e | at & (3, T (0 3,5/0,7,5,0) (49) g
< ° ‘
’ .
g Hence, using (48) one can calculate the intrinsic conductivity . K
ﬁ{ present in a pure, homogeneous system if the random force is
%‘ known. This contribution must presumably be added to the con- jﬁff

o venticnal mechanisms to obtain the total frequency-dependent

o conductivity.




Using (13), (15), and (3l1), we can readily evaluate the

random current: Suppressing k-dependence,

T, 3976535 = bty = 2 3 (e /ue . (50)
Hence, writing 0 (w) =0 (w) /o, where o = 21re2 p/mu, we obtain
Re o (w) =(u2- wz)}’/u, O <w <y
=0, Uy <w <=, _ (51)
-Im 5 (<) =w/y, O <w <y
sw/te + w2 =AY, wce <w, (52)

The real part of the conductivity satisfies the conductivity

sum rule:
> 2
f a. Re.sk(w) = 7e  p/2m. ©(53)
o ' 4
We note that the intrinsic conductivity exists in low
frequencies only, abxuptly vanishing beyond a critical frequency
w=w =y [of
c=H (see Re O
. . . ey 25 .
railses an interesting possibility. In an i1mpure system, e.g.,

(2)). Detecting the intrinsic conductivity

metals, in addition to the intrinsic conductivity there is the
contribution from impurity scattering. Ordinarily the latter is
given by the Drude formula which is a high frequency approximation.
Nonsmooth behavior in the vicinity of W, in an impure system wéuld

be an incdication of merging of the two different physical mechanisms.
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VIII. Dynamic RPA

It is well known that the response function may be put in
the form

() = % /1 + A % © () (54)

where xk(o)(w) is the response function due to H, and Ak(w) is

some function of V (see (1)). Various dynamic RPA theories are

, , _ -, 26 _
equivalent to taking Ak(w) = Ak(O)-Ak. For example, Ak = vy
gives the simple RPA and Ak = vk(l - Gk) gives the generalized
RPA, whers ;k is a local field term. For k<<l1, Gk = O.27 Hence,

at long wavelengths the two dynamic RPA theories are essentially
the same. i

Taking Ak(u) to be freguency-independent is clearly an
approximation, the validity of which may very well depend on

the static regime. Several people 28-31

have obtained asymptotic
conditions in three dimensions for Ak(w) or equivalently for-
qk(w), where Ak(w) = vy (1 - Gk(w)), sometimes referred to as

a dynamic local field term. There are otherwise no exact

general expressions known. Using the method of recurrence

relations we have recently derived an expression for Ak(z=iw):32
Suppressing k dependence
Mz o= BT O T ey T bz T - e O Th
1’71
= A+ ) (2). (55)

The first bracketed term A is z-independent. In general,
b (z) # b, (2) owing to the fact that &, # 8 (), v > 2. a
change in the memory function when interaction is turned on makes

the local field term frequency-dependent.
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In the two dimensional electron gas at long wavelengths, -

we have shown that bl(z) = bl(O)(z), since Av= Av(o)

r V22

(see sec. VI). That is, when density fluctuations are confined
to the vicinity of the Fermi surface, the memory function is
unaffected by the electron-electron interaction. Hence, in thig

static regime i.e., k<<i, Ak(m) = Ak and the dynamic RPA theories

are valid. This accounts for the RPA work of Holas et al.33
21
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IX. Discussion

The method of recurrence relations treats the time evolution
of dynamical variables as a geometric problem in Hilbert space.
In this approach, the recurrants are basic elements of a realized
Hilbert space whose structure contains the possible time evolu-
tion. The recurrence relations RRI and I1 are merely mathe-
matical expressions of this geometric picture.

For the two dimensional electron gas at long wavelengths,
the recurrants assume a very simple form making the structure
of the Hilbert space very eiementary. As a result, we were
able to deduce an exact solution for the time evolution of
density fluctuations occurring near the Fermi surface. Using
this solution, we have also obtained other physical quantities
via linear response relations. In some other static regimes
e.g., k = kF' the recurrants should have some other forms.
Hence, we expect the time evolution of density fluctuations to
be different.

Even when confined to the vicinity of the Fermi surface,
the density £fluctuations show persistent memory effects. There
thus exists a random current and there is an intrinsic con-
ductivity. Remarkably, the memory is shaped by quantum
fluctuations and not by the electron-electron interaction.

This has an unexpected consequence that the dynamic RPA theories
are exactly valid in this static regime.

The time evolution of density fluctuations may be regarded
as a Fermi sphere undergoing a restoring motion due to a slight

initial displacement in momentum space. In the two dimensional
P P




A i Ao o o P o Bt e PR A A i A P e I i Mt A b A At AR AR

electron gas there are an infinite degrees of freedom for such

a relaxation, giving rise to an infinite dimensions for the
corresponding Hilbert space. The resulting density fluctuations
are electron-hole scattering processes on which a collective
process is superimposed. These processes are dimension-sensitive.
In one dimensional electron gas, for example, the restoring

motion is one dimensional and the single-particle and collective
processes are bound together. For this system, the Hilbert

space is also finite-dimensional making the relaxation always

oscillatory.
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Appendix A. Relaxation function

We shall now evaluate the integration given below:

i

' 2, 2,%
_ sy zt (z°+p°) - (l-s)z
a (t) = 5= [ daz e 5> . (Al)
c z°+u/a

. )
Since 0<l, there are isclated poles at z = *iua %= tiw , which
P p

are outside the cut bounded by z = #*iu on the imaginary axis. Hence

the contributions from the isolated poles are straightforward to

evaluate. The residue at z = tiw_ is: .. A

5 sig_t tiw_t O
/27 [V1 = (u/w))® + (1-8)] e P = [VIa - (1-a)le P . (a2) i

The integration about contour ¢y containing the cut is as follows:

1
zt (uz + 22)1

s/2=iu"[ dz e >3
= l+a 2%/u
= s/u7-7 dy vu -y2 [l-#ayz/p2-932y4/u4-+...] elYt
-4
u ) 2 .
2 2 a9 ,2,a",3 ,4 iyt
= T / - - —_— —_— -
s/7u ] dy T -y" 1= g5 T . de
- H : u
2 4
= -8 842,03 ;
= s[l uz(at) -+u4(3t) ...]Jl(ut)/ut (A3)

where we have used an integral reoresentation of the Bessel
function Jl'

Combining the above results we have with the definitions(42a,b)

_ 3 2v . . ,
ao(t) = A (gig) Jl(ht)/pt + Ap cos »pt- (A4)
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Appendix B. Proof that ao(t=0) = 1

:1' ‘
"".n.

We shall consicder t+0 in our solution for ao(t) found in

.' '.
A
"'
.‘-

Appendix A:

.' ’l
‘."'n
DA S

‘l

3 2v
EFE) Jl(ut)/ut + Ap cos wpt. (B1l)

4%

a (t) = A ] (Y
v=0

3
o fe fe t M ]

Using the expansion formula, we have

s

e e ST
R
S R ]
BTN

c (B2)

0

e~ 8
N
~
l‘l'

Jl(Z)/z = . 2k 2 ¢

= (%7 wian . (B3)

=2l o, =t g, (B4) L

Substituting these results in (Bl), we obtain

260 =2, [ o) g, A (B5)

S n P
Now one can show that jifr
@ Vo, 1 o
Z 2% :l X = a ( 1- -G ) ° ' i ;""-"‘
v=0 27777 vi(v+l)! ‘

Using A_ =1 - vI -« and a_ = 2(/T = a - (1 - a))/o, we find -

r,

et e e e
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Appendix C. Proof that ao(t) = aéo)(t) when a

We shall consider o+l in our solution for ao(t) given below: LTT

v 3 2v

ao(t) = Asv (=) ~(5§€) Jl(ut)/p; + Ap cos wpt. (C1)

W~ 8

0

For a+l, we can write setting As = 1 and Ap = 0,

a, (a-1) (ut) %X, (c2)
0

e~ 8

a (t) =
° k

Although dk(a) is complicated, it becomes simple when a = 1:
a, (1 = (%72% wn?. (c3)

Hence, - . =

K, .y 2K .
()t o5 e . (ca) e

0o 2% (x1)? © o

Wr-8

1im ao(t) =
a>l k

We recall that aéo)(t) = Jo(ut), completing our proof.
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Appendix D. Frequency-Dependent Relaxation Function

We shall first calculate the frequency-dependent relaxation

function due to single-particle excitations az(w) via the formula

iwt - e|t] aS |

ot (D1)

oo -
az(w) = 1/27- [ at e

-C0

where £€+0. Using (Bl), we have

a2 [(-a/u®)Y o2V (D2)

n=0

v

-
-
I

-ixt - et ) (ut) /ut, (D3)

ot e
L
and ¢(°) 3 = Z(uz - wz)‘ ’ O<w<y
=0 , y<w<® (D4)
o . (2v) _ 4. 2V .
Now integrating by parts, we get ¢° = (iw) ¢. Hence, using

these results we obtain directly

1.
% As (uz-wz)z/(l-amz/uz), O<w<y

az(w)
=0 p<w<® {DS)

The relaxation function due to the plasmon excitations ag(w) is

straightforward:
aP(u) = 172 AL(S(mw) + Blwta)). (D6)

L .
Since Qp = u/a‘’, where z<l, the plasmon contributes only for

H<w <o,
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Appendix E. The Response Function X (w)

We shall use the well-known relation given below to calculate

the response function from the relaxation function,

e-iwt - €t ao(t) (E1)

where z+0. TFrom our solution, we can write:
= N s .
a, (t) AM(E) + pr(t) (E2)

One can immediately show that

H(w) = im/(.;;; -l o+ T;%—(é(wr-w) + 8 re)) (E3)
-

where w_ = w/a*." To calculate M(w), we first define

_ < -iwt - et ,3 2V

T <) = —_— :

Ty, () (j) at e . (57 J, (ut) /ut (E4)
Then,

ISPV
M) nia( W T, (). (ES)

Now integrating by parts, we find a recurrence relation for TI's:

T o= ed Wi u>1
Lz\)—' p 83T 92‘0_2 W i 2\;_2 ’ V>l , (EG)
where 95, = (gfz)zv Jl(ut)/ut. The above recurrence relation can
v M

be used tc sum (E5). By substituting (E6) in (E5), we get

M=C10+a w2 1/u? 4 daw S (-a)® PN (E7)
v=0
or 1 -
\Y]
M= ———— [T+ izw )(-a) g,,]. (ES)
1--3@2/u2 © v=0 2v

I
> o
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The sum has been already carried out (see Appendix B).

can be evaluated:

3
r = [(u2 - wz)'2 - im]/u2 ' O<w<yu

- cilw- - 2n? H<w<e . (E9) ot
Together «fﬁﬁ
- .’<.|‘

_ % BN

M= (;2 - awz) 1 (/‘..'2 -w® -iw/T=a), O<w<yp ol

2‘“%

=il oad) ™l (2o T, p<w<s (E10) R

B
R4

e
e

Combining (Z2) and (E10), we get

[}

Re ¥ i+ w As In M+ 0w Ap Im N

h

1+ AS uz/(l-a)/(uz -awz) T 0<w<y

1+ A 2 TTE ¢ - 02wy J (il - aw?), u<w<x  (E11)

where we hava used A = ZAS v1-0a/a. Similarly,

-Im ¥ = w As Re M + & Ap Re N

Ag W /uz-wz/(pz-amz), O<w<y

hw By w3 (o= ) + Slwtwl)), p<w<=, © (E12) o

Observe tha:t our results satisfy the relationship Im ¥ = -Twa .
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